L-RROI

UI Specification

ANGELA | JOHN | TYLER | YOMNA

TABLE OF CONTENTS

Overview

01 Introduction

Structure

Visual Systems

03	Sitemap	22	Grid systems
04	Userflow • Home	23	Color
05	Userflow • Instruments	24	Typography
06	Interaction Diagram • Instruments	25	Logo
08	Userflow • Seasonal Tau	26	Iconography
09	Interaction Diagram • Seasonal Tau	28	UI Components
11	Userflow • Rover View		
12	Interaction Diagram • Rover View		
15	Annotated Screens		

L-RROI/ DESIGN SPECIFICATION

INTRODUCTION

NASA Jet Propulsion Lab's (JPL) upcoming mission, Mars 2020, is the next stage in the robotic exploration of Mars. The mission has multiple scientific goals: searching for previous signs of life on Mars, characterizing the planet's climate and geology, and preparing for potential human exploration. An accurate understanding of weather on Mars is critical to the success of the mission since weather conditions on Mars influence where and how science experiments are conducted. Atmospheric opacity, for example, informs exposure time, power usage, and temperature considerations among other factors when planning instrument usage.

As Mars lacks liquid water, weather is driven by solar longitude (Ls), This means the weather patterns on Mars are highly predictable up to 1 Martian Year (600 Earth days) out. We designed the Long-term Routing for Rover Opacity Instrumentation tool (L-RROI) to take advantage of the predictable weather patterns on Mars to aid mission teams by forecasting the optimal opacity levels to use a set of instruments while also providing context around geography and general weather information. In doing so, scientists will be able to quickly rule out certain activities, saving them time in the planning process and moving them closer to the 1:1 uplink goal set by NASA.

L-RROI is browser-based, similar to many of NASA's current tools. This ensures fast updates and machine compatibility while enabling easier sharing between users through URLs. We intend for this feature to enhance collaboration and transparency amongst users during the campaign planning process.

This Design Specification is meant to describe L-RROI in full to create as little friction as possible during the development process. It is composed of an architecture, system flow, interaction model and visual system to create a holistic definition of the application.

SITEMAP

L-RROI consists of four main pages. The homepage, instrument detail page, seasonal tau page, and weather page. The homepage provides a view of the rover's traverse on the map. This acts as a gateway to other features such as annotation, rover view, share and export. The main pages have multiple states which are described in the individual user flows.

USER FLOW • HOME

The homepage acts as the gateway to all the detailed pages. From the homepage, users can enter the instruments flow, seasonal tau flow, and weather flow. Additionally, the homepage is an interactive dashboard and the different modules on it can be customized through the header filters. Users can also interact with the homepage by hovering on different elements or clicking on the different icons in the tool box.

USER FLOW • **INSTRUMENTS**

On the instruments page, users can adjust the timerange of the favorability graph through the header filters. Users can hover over the favorability graph of different instruments to get additional context about the instrument's condition in a given timerange. If users want to learn more about an instrument, they can expand an instruments state to see additional details such as instrument desciprion and upcoming favorable sols.

INTERACTION DIAGRAM • INSTRUMENTS

L-RROI	Customize View	Sol 200 - 340 -	Tau 0.0 - ∞ ▼ Coordinates _	
← Instr	ruments			
Instr	ument		Favorable Solar Longitude	Upcoming Favorable Sols
	MastCamZ > 6m		Ls 90 - 180	Sol 312 - 320
D	MastCamZ < 6m		Ls 90 - 180	Sol 200-240
O	MastCamZ - 3D		Ls 90 - 180	Sol 200-240
O	Supercam - LIBS		Ls 90 - 180	Sol 200-240
O	Supercam - Raman		Ls 90 - 180	Sol 200-240
O	MEDA - ATS		Ls 90 - 180	Sol 200-240
D	MEDA - HS		Ls 90 - 180	Sol 200-240

				<i>y</i>
				_
Preferred Tau	Condition Favorability ①	- Condition		
0.0 - 1.0	11111 Sel 200 Sel 200	1 000000000000000000000000000000000000	Sol 330	
0.0 - 1.5		ol 277	Sol 330	
0.0 - 1.5	sol 200 s	ol 277	Sol 330	
0.0 - 1.0		ol 277	Sol 330	
0.0 - 1.2		ol 277	Sol 330	
1.0 - 3.0	Sol 200	ol 277	Sol 330	
1.0 - 3.0	1111111111111111111111111111111111111	0 277	Sol 330	
		Арр	ly	

INTERACTION DIAGRAM • INSTRUMENTS

	L-RR	OI Customize Vie	Sol 200 - 340	Tau <u>0.0 - ∞</u> ⊂ Coordin	nates <u>x,y,z</u>			Current Sol: 277 MY: 3	7 Q -
		Instruments							
		Instrument		Favorable Solar Longitude	Upcoming Favorable Sols	Preferred Tau	Condition Favorability ()	- Condition favorability	
≽		🔽 MastCamZ > 6n	n -	Ls 90 - 180	Sol 312 - 320	0.0 - 1.0	Sol 200	501 277 Sol 330	
		MastCamZ < 6n	n -	Ls 90 - 180	Sol 200-240	0.0 - 1.5	1000000000000000000000000000000000000	Sol 277 Sol 330	
		MastCamZ - 3D		Ls 90 - 180	Sol 200-240	0.0 - 1.5	1000000000000000000000000000000000000	Sol 277 Sol 330	
		Supercam - LIB	s -	Ls 90 - 180	Sol 200-240	0.0 - 1.0	11111 1111111111111111111111111111111	Sol 277 Sol 330	
		Supercam - Rar	nan 🔫	Ls 90 - 180	Sol 200-240	0.0 - 1.2		Sol 277 Sol 330	
		🗌 MEDA - ATS		Ls 90 - 180	Sol 200-240	1.0 - 3.0	1000000000000000000000000000000000000	Sol 277 Sol 330	
		🗌 MEDA - HS		Ls 90 - 180	Sol 200-240	1.0 - 3.0		Sol 277 Sol 330	
								Арріу	

USER FLOW • **SEASONAL TAU**

On the seasonal tau page, users can adjust the timerange of the graph through the header filters. Users can hover over the graph to get the exact tau value for the point they're hovered over. If users want to compare years, they can select multiple years from the years panel. Additionally, users can zoom into smaller timeranges by using the drag toggle or typing the specific days they want to see. Finally, users can click on Export or View Raw Data to export the data.

INTERACTION DIAGRAM • SEASONAL TAU

L-RROI/ DESIGN SPECIFICATION

INTERACTION DIAGRAM • SEASONAL TAU

USER FLOW • **ROVER VIEW**

When users drop the rover view pin at any spot on the traverse, the rover view panel becomes visible. Users are able to adjust settings on the image such as instrument, exposure time, and tau value. Users can also compare different image settings against one another by clicking on the compare toggle.

INTERACTION DIAGRAM • ROVER VIEW

INTERACTION DIAGRAM • ROVER VIEW

INTERACTION DIAGRAM 3 • **ROVER VIEW**

L-RROI/ DESIGN SPECIFICATION

ANNOTATED SCREENS • MAP

L-RROI/ DESIGN SPECIFICATION

The header allows the user to customize their view according to sol range, tau value/range or specfic coordinates.

A blue marker appears on the map to denote the location of the rover on the current sol.

The toolbar on the right side offers tools such as annotations, rover view, share, and export.

The + and - buttons allow the user to zoom in and out of the map. The locator allows the user to quickly return to the rover's current location.

A fixed legend provides information the map and rover path.

5

ANNOTATED SCREENS • TOOL PANELS

L-RROI/ DESIGN SPECIFICATION

The left panel offers a quick view of rover instruments and their favorable tau values.

Selecting the checkbox(es) next to an instrument will adjust the map to show the areas of the path with the favorable tau conditions.

The blue graph shows an easy to read view of how the favorable the conditions are for each instrument over the selected sol range.

The center panel offers a quick view of seasonal tau information for the selected sol range. The blue line on the graph denotes the current sol.

The right panel shows basic weather information on a given sol. The slider at the top of the panel allows the user to look at weather on a specific sol within the selected sol range.

5

6

At the bottom of each panel, users can select "view more" for additional information.

ANNOTATED SCREENS • INSTRUMENTS

L-RRC	Customize View	Sol 200 - 340 👻	Tau <u>0.0 - ∞</u> ▼	Coordinates			Current Sol: 277 MY: 37 🙁 ▼	-
÷	Instruments	1						
	Instrument		Favorable Solar Longitud	e	Upcoming Favorable Sols	Preferred Tau	Condition Favorability ① — Condition favorability	
2	✓ MastCamZ > 6m	- 3	Ls 90 - 180		Sol 312 - 320	0.0 - 1.0	۲ ۵ 2 2 ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	
	☐ MastCamZ < 6m	-	Ls 90 - 180		Sol 200-240	0.0 - 1.5	Sol 200 Sol 277 Sol 330	l
	MastCamZ - 3D	-	Ls 90 - 180		Sol 200-240	0.0 - 1.5	Sol 200 Sol 277 Sol 330	I
	Supercam - LIBS	-	Ls 90 - 180		Sol 200-240	0.0 - 1.0	3 Sol 200 Sol 277 Sol 330	(
	Supercam - Raman	-	Ls 90 - 180		Sol 200-240	0.0 - 1.2	Sel 200 Sel 277 Sel 330	(
	🗌 MEDA - ATS	-	Ls 90 - 180		Sol 200-240	1.0 - 3.0	Sol 200 Sol 277 Sol 330	ł
	MEDA - HS	÷	Ls 90 - 180		Sol 200-240	1.0 - 3.0	4	(
							Apply	ę
							5	(

This is the detailed instrument panel view. It shows additional information with more details. Select the back arrow to return to the homescreen.

Selecting a checkbox next to an instrument will adjust the map on the nome screen to show the areas of the path with the favorable tau conditions.

Clicking on the down arrow will expand the view even further to show additional favorable sol ranges, a description on the instrument, and show factors that may contribute to the condition favorability.

On this view, the condition favorability graph is larger and easier to read.

Select apply to return to the home screen and see the map view with the selected instrument(s).

ANNOTATED SCREENS • SEASONAL TAU

L-RROI/ DESIGN SPECIFICATION

This is the detailed Seasonal Tau view. Here, the user can see visualizations of tau information. Select the back arrow to return to the homescreen.

This slider allows the user to adjust the view to further zoom into selected dates within the selected sol range.

The graph shows tau as a function of solar longitude.

The legend shows that the solid orange line shows historical tau, while the dotted orange line shows the predicted tau. The error margin for the predicted tau is also noted as shaded orange. The blue symbol on the graph is shows today's sol.

Users are able to select multiple mars years to show on the graph. If more than one year are selected, the graph breaks into small multiples.

The export button directs the user to a form that allows them to export this visualization.

ANNOTATED SCREENS • ROVER VIEW

When the rover view button is selected, it will remain blue. Hovering over the button, a "rover view" label will apear.

Once rover view has been selected, a pin will appear and the user can drop it anywhere on the path. A label will appear above the pin to show the sol where the pin is dropped.

A panel also will appear on the right side.

The user can also reset any changes they have made to the rover view panel and press x to exit rover view.

ANNOTATED SCREENS • ROVER VIEW

L-RROI/ DESIGN SPECIFICATION

The top image shows a photo taken of mars when the tau was the same condition (exposure time, tau value, instrument used) as where the user has dropped the pin.

The user is able to change exposure time, tau value, instrument used in order to find a particular sol with their desired conditions.

At the bottom, they will see other images with a similar tau level. By clicking on one of those photos, the image at the top will change to the selected photo.

The user can toggle "compare view" on and off if they wanted to compare 2 photos. Once they toggle "compare view" on, the user can type in the exposure time, tau value, instrument used and the bottow half of the panel will be replace with a second photo that meets the parameters that the user has set.

VISUAL SYSTEM

GRID SYSTEMS

L-RROI uses a 12-column grid for both 1920x1080 and 1440x1024 screen sizes.

? When to use

Dashboard screens will will take the grid system with smaller margin and gutter in order to provide more real estate to the map. **?** When to use

All screens without a map.

12 columns - 40 margin - 20 gutter

VISUAL SYSTEM / COLOR

COLOR

The primary color is orange which mimics the dusty surface of Mars. Blue was chosen as a complementary color.

Rationale

We envision L-RROI as a platform to be inserted in the middle of the rover planning process. Scientists will open L-RROI, quickly get tau information, and come back to complete their intended tasks. In order to minimize the cost of task-switching between platforms, L-RROI limits color usage to orange and blue.

PRIMARY

? When to use

Opacity: 50%

Primary color will be used for any tau-related elements.

GRADIENT GREYS Dust Devil Grey #FFFFFF #000000 **#FFFFFF - #FF6B00** #000000 #000000 #000000 #000000 Opacity: 20%

Opacity: 80%

Opacity: 70%

Opacity: 90%

? When to use

Opacity: 70%

Gradient will be used to visualize tau on the rover traverse. Higher tau will have darker orange.

SECONDARY

Water blue

? When to use

Any blue element in the platform demonstrates a call-to-action or highlights important interactive elements.

Opacity: 100%

VISUAL SYSTEM / TYPOGRAPHY

TYPOGRAPHY

L-RROI uses the Futura typeface and its variation across the platform. The san-serif font's simplicity makes it easy to read at speed, and on the go.

Rationale

We want to embrace NASA's culture of heritage by choosing a typeface that has a long history with the organization. Futura was the first typeface to be sent to the moon. One of the objectives of the Mars 2020's mission is to "Prepare for Future Human Exploration". Using Futura conveys our hope that L-RROI could contribute to NASA's space exploration program, making it one step closer to sending the first human to Mars.

LOGO

font-family: Futura; font-style: normal; font-weight: bold; font-size: 20px; line-height: 27px; letter-spacing: 2px;

L-RROI/ DESIGN SPECIFICATION

Heading 1

font-family: Futura; font-style: normal; font-weight: 500; font-size: 30px; line-height: 40px;

HEADING 2

font-family: Futura; font-style: normal; font-weight: 500; font-size: 16px; line-height: 21px;

Body

font-family: Futura; font-style: normal; font-weight: 500; font-size: 16px; line-height: 21px;

Description

font-family: Futura; font-style: normal; font-weight: 500; font-size: 12px; line-height: 16px; font-family: Futura; font-style: normal; font-weight: 500; font-size: 16px; line-height: 21px; color: water blue;

HERE MEN FROM THE PLANET EARTH FIRST SET FOOT UPON THE MOON JULY 1969, A. D. WE CAME IN PEACE FOR ALL MANKIND tiles Callina Edin E. alling MICHAEL COLLINS EDWIN E. ALDRIN, JR. ASTRONAUT Richard Nixon RICHARD NIXON

LINK LARGE

Link small

font-family: Futura; font-style: normal; font-weight: 500; font-size: 16px; line-height: 21px; color: water blue;

VISUAL SYSTEM / TYPOGRAPHY

LOGO

The L-RROI logo uses the variation of orange to demonstrate the impact of tau on the red planet. It is simple and semiotic.

Rationale

During a global dust storm, wind carries dust into the air, hindering rover cameras to take clear images. The more dust in the atmosphere, the darker the image. We leverage this scientific phenomenon to create a logo for L-RROI.

LOGO

VISUAL SYSTEM / ICONOGRAPHY

ICONOGRAPHY

VISUAL SYSTEM / ICONOGRAPHY

ICONOGRAPHY

Hover

Zoom out

Selected

BUTTON

Construction

Disabled

Text

#000000 Opacity: 70%

INPUT FIELD

Construction

States

Default

Text

Border radius: 2px Color: #FFFFFF Opacity: 100%

Active

Text

Border radius: 2px Color: Water blue Opacity: 100%

Filter applied

Text

Border radius: 2px Color: Tau orange Opacity: 100%

20

MARTIAN MAP

L-RROI uses Mars orbiter images as the main source for the map. The map reflects the actual location of Jerezo Crater where the Mars 2020 rover will be operating.

Rationale

Similar to our color rationale, we want scientists to focus on the task at hand and L-RROI would be a tool to support their workflow. To highlight the impact of tau on the map and to minimize distractions, L-RROI will not use color images so that scientists can quickly assess the impact of tau along the rover traverse and how it affects instruments.

12 columns

DON'T

DO

Color images

Underexposed

Overexposed

ROVER TRAVERSE

The rover traverse in L-RROI demonstrates the nonimal path and timeline of the Mars 2020 mission.

Specs

Line thickness: 5px Color: #FFFFF Opacity: 80% Dotted line: 5,5

L-RROI/ DESIGN SPECIFICATION

Current location Landing site Completed path Upcoming path

TAU PATH

Tau path will use the 'Dust Devil' gradient to illustrate concentration of dust at a certain time in the mission.

Rationale

The shape and gradient of tau path was inspired by images of dust devils taken by spacecraft orbiting around Mars. The path will have an opacity of 70% in order to allow scientists to still see through to the Martian terrian.

Opacity 70% with No cap

Opacity 100%

Rounded caps signify no clear cut in time, giving untrusworthy impression.

L-RROI/ DESIGN SPECIFICATION

DON'T

HEADER

Full Header

INSTRUMENT PANEL

Full panel

				T
	INSTRUMENTS			
	Instrument	Favorable Tau Value	Condition (<i>i</i>) Favorability	
	MastcamZ > 6m	0.0 - 1.0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
	🔲 Supercam - LIBS	0.0 - 1.0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	390
	🗌 MEDA - ATS	1.0 - 3.0	Sol 200 340	
		0.0 - 0.5	Image: sol 200 340	
	N			
	<u> </u>	465		
	Header			
20	INSTRUMENTS			
10	Instrument	Favorable Tau Value	Condition Favorability ()	100

465

Individual instrument

On-click

	VIEW MORE	
171	465	

Scroll bar

SEASONAL TAU PANEL

Full panel

Header

WEATHER PANEL

Full panel

Header

ROVER VIEW PANEL

Full panel

Header ----20 ROVER VIEW 10 Compare view Reset 5 465 Images 10 🔣 10 Sol 245 Tau <u>0.8 -</u> Exposure time 8mins -Instrument <u>MastcamZ > 6m •</u> 467 77

213

OTHER MODULES

Legend

POPUPS

Tau on hover

Graph on hover

Sol range

			_
	Date range	Custom 🔤 🖨	
20		15 I 10 20	
	Start sol	End sol	158
		20	
		Apply	
		20	1

Tau range

Tool tips

	L-RRO		Customize View	Sol <u>200 - 340 -</u>	Tau <u>0.0 - ∞</u>	 Coordinates 	<u>x,y,z</u>			
	÷	40 Inst 40	ruments						120	
		Inst	rument		Favorable Solar Long	jitude	Upco Favo	oming rable Sols	Preferred Tau	Condition Favorability ①
			MastCamZ > 6m	Ŧ	Ls 90 - 1	80	Sol	312 - 320	0.0 - 1.0	801 200
			MastCamZ < 6m	-	Ls 90-1	80	Sol	200-240	0.0 - 1.5	Sol 200
40			MastCamZ - 3D	-	Ls 90-1	80	Sol	200-240	0.0 - 1.5	Sol 200
			Supercam - LIBS	-	Ls 90-1	80	Sol	200-240	0.0 - 1.0	800 200
			Supercam - Raman	-	Ls 90 - 1	80	Sol	200-240	0.0 - 1.2	8000000000000000000000000000000000000
			MEDA - ATS	-	Ls 90 - 1	80	Sol	200-240	1.0 - 3.0	Sol 200
			MEDA - HS	-	Ls 90 - 1	80	Sol	200-240	1.0 - 3.0	8000000000000000000000000000000000000
								1597		
									40	

L-RROI/ DESIGN SPECIFICATION